Enrollment No: _____ Exam Seat No: _____ C. U. SHAH UNIVERSITY Winter Examination-2020

Subject Name : Mathematical Concepts for Computer Science

Subject Cod	le : 4CS01BMA2	Branch: B.C.A.	
Semester: 1	Date: 09/03/2021	Time: 03:00 To 06:00	Marks: 70
Instructions: (1) Use (2) Instr (3) Drav (4) Assu	3 of Programmable calculator & any or ructions written on main answer book w neat diagrams and figures (if necess ume suitable data if needed.	ther electronic instrument is pr are strictly to be obeyed. sary) at right places.	ohibited.
Q-1	Attempt the following questions:		[14]
a)	Which of the following matrix is of	the order 2×3 ?	(01)
b) c) d)	a) $\begin{bmatrix} 3 & 4 \\ 9 & 3 \end{bmatrix}$ b) $\begin{bmatrix} 2 & 3 \\ 3 & 3 \end{bmatrix}$ c) $\begin{bmatrix} 3 & 2 \\ 7 & 3 \end{bmatrix}$ Give one example of column matrix If $A^2 = A$, then the matrix A is known a) Idempotent Matrix b) Involutory Matrix d) Id Which of the following matrix is a a) $\begin{bmatrix} 3 & 0 & 9 \\ 0 & 3 & 8 \\ 0 & 0 & 0 \end{bmatrix}$ b) $\begin{bmatrix} 0 & 0 & 0 \\ 3 & 3 & 0 \\ 9 & 0 & 3 \end{bmatrix}$ c) $\begin{bmatrix} 3 & 0 & 0 \\ 4 & 3 & 0 \\ 0 & 0 & 8 \end{bmatrix}$ d) $\begin{bmatrix} 3 & 0 & 9 \\ 0 & 3 & 8 \\ 0 & 1 & 0 \end{bmatrix}$	$ \begin{array}{c} 9\\ 0\\ 0 \end{array} \end{bmatrix} d) \begin{bmatrix} 3 & 2\\ 0 & 9\\ 0 & 2 \end{bmatrix} \\ x. \\ wn as \\ \hline c) Nilpotent Matrix \\ dentity Matrix \\ type of Upper Triangular Matrix \\ \end{array}$	(01) (01) ix? (01)
e) f)	 The set <i>N</i> denotes a) The set of all positive numb b) The set of real numbers c) The set of all negative numb d) The set of rational numbers 	ers pers A = 5 $ B = 3$ and $ A + B = 1$	(01)
(j) (j) (j)	find $ A \cap B $. Let $A = \{0,1,2\}$ write all improper Define the following term: Reflexiv What do you mean by $x \to 0$? Check whether the function $f(x) =$	subset of A. we Relation. $x^3 - x^2 + 4x + 2$ is even or	(01) (01) (01) (01) odd (01)

function?

k) If
$$A = \begin{bmatrix} -1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$
 then find A^T . (01)

1)
$$\lim_{x \to 0} \frac{\sin 3x}{x} =$$
. (01)

m) Let
$$U = \{1, 2, ..., 9\}$$
 and $A = \{1, 2, 6, 5, 8\}$ then find A^c . (01)

n) Let
$$A = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$$
, then det $A =$ _____(01)

Attempt any four questions from Q-2 to Q-8

Q-2 Attempt all questions. [14]

[cosθ 0 sin0 a) 0 1 then show that A is an orthogonal matrix. 0 Let A =l−sinθ 0 cosθ]

b)
Find
$$adj A$$
 if $A = \begin{bmatrix} 1 & 2 & 5 \\ 3 & 1 & 4 \\ 1 & 1 & 2 \end{bmatrix}$. (05)

c) If
$$A = \begin{bmatrix} 0 & 1 \\ 2 & -1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 0 \\ 3 & 5 \end{bmatrix}$ then find 3AB. (03)

Attempt all questions [14]

Draw a Venn Diagram for the following sets: (05) a) ... (00 -NT 4

$$U = \{x \in \mathbf{N} : 1 \le x < 10\}$$

$$A = \{1, 2, 6, 7, 8, 9\}, B = \{1, 3, 4, 5, 7\}, C = \{2, 3, 6, 7, 9\}$$

b) Verify Distributive Law of Union over intersection for these following (05) sets.
$$A = \{1, 2, 6, 10, 15\}, B = \{1, 2, 4, 12, 14, 15\}, C = \{1, 2, 3, 8, 9, 10, 12\}$$

c) Define the following terms with examples:

- a) Equivalent Sets
- b) Overlapping Sets

Attempt all questions Q-4

• •

Q-3

- a) i) Draw a graph of a function $f: \mathbf{R} \to \mathbf{R}$ defind by $f(x) = 4x^2, x \in \mathbf{R}$. (06) ii) Let $A = \{1, 2, 3, 4\}$, $B = \{0, 1, 2\}$ and $C = \{-1, 2, 3\}$. Define relation R on set A to B by $R = \{(1,0), (2,2), (4,1)\}$ and relation S on set B to C by $S = \{(0, -1), (2,3), (1,2)\}$ Then find SoR.
- **b**) Show that the given relation R is an Equivalence relation on a set (05) $A.where A = \{1, 2, 3, 4\}$ and $R = \{(1 \ 1) \ (1 \ 4) \ (1 \ 3) \ (3 \ 1) \ (4 \ 1) \ (4 \ 4) \ (2 \ 3) \ (2 \ 2) \ (3 \ 2) \ (3 \ 3)\}$

c) Check whether the relation R on a set A is reflexive or symmetric? (03)

$$A = \{1,2,3,4\}, R = \{(1,1), (1,2), (2,2), (2,1), (3,3), (3,4), (4,3), (4,4)\}$$

Q-5 **Attempt all questions**

[14]

(06)

(04)

[14]

a)	Find the inverse of matrix $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix}$ if possible.	(06)
b)	Check whether the function $f: \mathbf{R} \to \mathbf{R}$ is even, odd, neither even nor odd? i) $f(x) = \cos x$ ii) $f(x) = x^2$ iii) $f(x) = x^3 - 9x$	(04)
c)	Define the following terms with examples: i) Decreasing function ii) Onto function	(04)
	Attempt all questions	[14]
a)	In which ratio does the point $(-4,6)$ divide the line segement joining the	(07)
b)	Find the area of triangle made by following points:	(04)
~)	i) $(1,-1), (-4,6), (-3,-5)$	(0-)
`	ii) (-1.5,3), (6, -2), (-3,4)	
C)	1) Find the distance between origin and $(36,15)$. ii) Find midpoint of the line segment joing the points (1.6) and (-1.0)	(03)
	i) The indpoint of the fine segment joing the points (1,0) and (-1,0).	
	Attempt all questions	[14]
a)	i) Let $A = \begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix}$ and $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ then prove that $A^2 = 3A - 2I$.	(06)
	ii) Let $A = \begin{bmatrix} 1 & 2 & -1 \\ 1 & -1 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 5 & 1 \\ 1 & -1 \end{bmatrix}$ then find $A + 4B - I$.	
	where Lis an identity matrix.	
b)	Find 1) $\lim_{x \to 2} 5(4x - 2)$	(05)
	2) $\lim_{x \to 5} \frac{x-11}{x+5}$	
	3) $\lim_{x \to 0} \frac{e^x - 1}{x}$	
``		(0.2)
C)	Let $A = \{1, 2, 3, 4\}$ and $B = \{a, b, c, w\}$ then find $A \times B$ and $B \times A$.	(03)
	Attempt all questions	[14]
a)	Let $A = \begin{bmatrix} -1 & -1 & -1 \\ 0 & 1 & 0 \end{bmatrix}$ then find A^3	(08)
	Let $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, then find A^* .	
b)	Verify De-Morgan's Law for the following sets: $U = \{1, 2,, 10\}, A = \{1, 2, 3, 4, 8, 10\}$ and $B = \{2, 4, 8, 7, 10\}$	(06)

Q-6

Q-7

Q-8

